Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.871
Filtrar
1.
J Zhejiang Univ Sci B ; 25(4): 341-353, 2024 Apr 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38584095

RESUMO

Kidney fibrosis is an inevitable result of various chronic kidney diseases (CKDs) and significantly contributes to end-stage renal failure. Currently, there is no specific treatment available for renal fibrosis. ELA13 (amino acid sequence: RRCMPLHSRVPFP) is a conserved region of ELABELA in all vertebrates; however, its biological activity has been very little studied. In the present study, we evaluated the therapeutic effect of ELA13 on transforming growth factor-ß1 (TGF-ß1)-treated NRK-52E cells and unilateral ureteral occlusion (UUO) mice. Our results demonstrated that ELA13 could improve renal function by reducing creatinine and urea nitrogen content in serum, and reduce the expression of fibrosis biomarkers confirmed by Masson staining, immunohistochemistry, real-time polymerase chain reaction (RT-PCR), and western blot. Inflammation biomarkers were increased after UUO and decreased by administration of ELA13. Furthermore, we found that the levels of essential molecules in the mothers against decapentaplegic (Smad) and extracellular signal-regulated kinase (ERK) pathways were reduced by ELA13 treatment in vivo and in vitro. In conclusion, ELA13 protected against kidney fibrosis through inhibiting the Smad and ERK signaling pathways and could thus be a promising candidate for anti-renal fibrosis treatment.


Assuntos
Nefropatias , Obstrução Ureteral , Camundongos , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Nefropatias/patologia , Transdução de Sinais , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Fator de Crescimento Transformador beta1 , Rim/metabolismo , Fibrose , Biomarcadores/metabolismo
2.
Life Sci ; 345: 122606, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574884

RESUMO

AIMS: Alzheimer's disease (AD), the most common neurodegenerative disorder associated with aging, is characterized by amyloid-ß (Aß) plaques in the hippocampus. Ergosterol, a mushroom sterol, exhibits neuroprotective activities; however, the underlying mechanisms of ergosterol in promoting neurite outgrowth and preventing Aß-associated aging have never been investigated. We aim to determine the beneficial activities of ergosterol in neuronal cells and Caenorhabditis elegans (C. elegans). MATERIALS AND METHODS: The neuritogenesis and molecular mechanisms of ergosterol were investigated in wild-type and Aß precursor protein (APP)-overexpressing Neuro2a cells. The anti-amyloidosis properties of ergosterol were determined by evaluating in vitro Aß production and the potential inhibition of Aß-producing enzymes. Additionally, AD-associated transgenic C. elegans was utilized to investigate the in vivo attenuating effects of ergosterol. KEY FINDINGS: Ergosterol promoted neurite outgrowth in Neuro2a cells through the upregulation of the transmembrane protein Teneurin-4 (Ten-4) mRNA and protein expressions, phosphorylation of the extracellular signal-regulated kinases (ERKs), activity of cAMP response element (CRE), and growth-associated protein-43 (GAP-43). Furthermore, ergosterol enhanced neurite outgrowth in transgenic Neuro2A cells overexpressing either the wild-type APP (Neuro2a-APPwt) or the Swedish mutant APP (Neuro2a-APPswe) through the Ten-4/ERK/CREB/GAP-43 signaling pathway. Interestingly, ergosterol inhibited Aß synthesis in Neuro2a-APPwt cells. In silico analysis indicated that ergosterol can interact with the catalytic sites of ß- and γ-secretases. In Aß-overexpressing C. elegans, ergosterol decreased Aß accumulation, increased chemotaxis behavior, and prolonged lifespan. SIGNIFICANCE: Ergosterol is a potential candidate compound that might benefit AD patients by promoting neurite outgrowth, inhibiting Aß synthesis, and enhancing longevity.


Assuntos
Doença de Alzheimer , Neuroblastoma , Animais , Humanos , Caenorhabditis elegans/metabolismo , Longevidade , Proteína GAP-43 , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais Geneticamente Modificados/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Crescimento Neuronal
3.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611791

RESUMO

Acute lung injury (ALI) represents a life-threatening condition with high morbidity and mortality despite modern mechanical ventilators and multiple pharmacological strategies. Therefore, there is a need to develop efficacious interventions with minimal side effects. The anti-inflammatory activities of sea cucumber (Cucumaria frondosa) and wild blueberry (Vaccinium angustifolium) extracts have been reported recently. However, their anti-inflammatory activities and the mechanism of action against ALI are not fully elucidated. Thus, the present study aims to understand the mechanism of the anti-inflammatory activity of sea cucumber and wild blueberry extracts in the context of ALI. Experimental ALI was induced via intranasal lipopolysaccharide (LPS) instillation in C57BL/6 mice and the anti-inflammatory properties were determined by cytokine analysis, histological examination, western blot, and qRT-PCR. The results showed that oral supplementation of sea cucumber extracts repressed nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, thereby downregulating the expression of interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF) in the lung tissue and in the plasma. Wild blueberry extracts also suppressed the expression of IL-4. Furthermore, the combination of sea cucumber and wild blueberry extracts restrained MAPK signaling pathways by prominent attenuation of phosphorylation of NF-κB, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) while the levels of pro-inflammatory cytokines were significantly suppressed. Moreover, there was a significant and synergistic reduction in varying degrees of ALI lesions such as distorted parenchyma, increased alveoli thickness, lymphocyte and neutrophil infiltrations, fibrin deposition, pulmonary emphysema, pneumonia, intra-alveolar hemorrhage, and edema. The anti-inflammatory effect of the combination of sea cucumber and wild blueberry extracts is associated with suppressing MAPK and NF-κB signaling pathways, thereby significantly reducing cytokine storm in LPS-induced experimental ALI.


Assuntos
Lesão Pulmonar Aguda , Mirtilos Azuis (Planta) , Extratos Vegetais , Pepinos-do-Mar , Camundongos , Animais , Camundongos Endogâmicos C57BL , NF-kappa B , Sistema de Sinalização das MAP Quinases , Lipopolissacarídeos/toxicidade , Inflamação/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Citocinas , MAP Quinases Reguladas por Sinal Extracelular , Interleucina-1beta , Anti-Inflamatórios/farmacologia
4.
Oxid Med Cell Longev ; 2024: 7683793, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500550

RESUMO

The extracellular signal-regulated kinase (ERK) MAPK pathway is dysregulated in various human cancers and is considered an attractive therapeutic target for cancer. Therefore, several inhibitors of this pathway are being developed, and some are already used in the clinic. We have previously identified an anticancer compound, ACA-28, with a unique property to preferentially induce ERK-dependent apoptosis in melanoma cells. To comprehensively understand the biological cellular impact induced by ACA-28, we performed a global gene expression analysis of human melanoma SK-MEL-28 cells exposed to ACA-28 using a DNA microarray. The transcriptome analysis identified nuclear factor erythroid 2-related factor 2 (Nrf2), a master transcription factor that combats oxidative stress, as the most upregulated genetic pathway after ACA-28 treatment. Consistently, ACA-28 showed properties to increase the levels of reactive oxygen species (ROS) as well as Nrf2 protein, which is normally repressed by proteasomal degradation and activated in response to oxidative stresses. Furthermore, the ROS scavenger N-acetyl cysteine significantly attenuated the anticancer activity of ACA-28. Thus, ACA-28 activates Nrf2 signaling and exerts anticancer activity partly via its ROS-stimulating property. Interestingly, human A549 cancer cells with constitutively high levels of Nrf2 protein showed resistance to ACA-28, as compared with SK-MEL-28. Transient overexpression of Nrf2 also increased the resistance of cells to ACA-28, while knockdown of Nrf2 exerted the opposite effect. Thus, upregulation of Nrf2 signaling protects cancer cells from ACA-28-mediated cell death. Notably, the Nrf2 inhibitor ML385 substantially enhanced the cell death-inducing property of ACA-28 in pancreatic cancer cells, T3M4 and PANC-1. Our data suggest that Nrf2 plays a key role in determining cancer cell susceptibility to ACA-28 and provides a novel strategy for cancer therapy to combine the Nrf2 inhibitor and ACA-28.


Assuntos
Melanoma , Neoplasias Pancreáticas , Humanos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Melanoma/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Neoplasias Pancreáticas/tratamento farmacológico
5.
Pharmacol Rep ; 76(2): 368-378, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498259

RESUMO

BACKGROUND: Excessive stress, a major problem in modern societies, affects people of all ages worldwide. Corticosterone is one of the most abundant hormones secreted during stressful conditions and is associated with various dysfunctions in the body. In particular, we aimed to investigate the protective effects of hygrolansamycin C (HYGC) against corticosterone-induced cellular stress, a manifestation of excessive stress prevalent in contemporary societies. METHODS: We isolated HYGC from Streptomyces sp. KCB17JA11 and subjected PC12 cells to corticosterone-induced stress. The effects of HYGC were assessed by measuring autophagy and the expression of mitogen-activated protein kinase (MAPK) phosphorylation-related genes. We used established cellular and molecular techniques to analyze protein levels and pathways. RESULTS: HYGC effectively protected cells against corticosterone-induced injury. Specifically, it significantly reduced corticosterone-induced oxidative stress and inhibited the expression of autophagy-related proteins induced by corticosterone, which provided mechanistic insight into the protective effects of HYGC. At the signaling level, HYGC suppressed c-Jun N-terminal kinase and extracellular signal-regulated kinase phosphorylation and p38 activation. CONCLUSIONS: HYGC is a promising candidate to counteract corticosterone-induced apoptosis and oxidative stress. Autophagy and MAPK pathway inhibition contribute to the protective effects of HYGC. Our findings highlight the potential of HYGC as a therapeutic agent for stress-related disorders and serve as a stepping stone for further exploration and development of stress management strategies.


Assuntos
Corticosterona , Proteínas Quinases p38 Ativadas por Mitógeno , Ratos , Animais , Humanos , Corticosterona/toxicidade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Estresse Oxidativo , Transdução de Sinais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Apoptose , Autofagia
6.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542369

RESUMO

Arrestins are known to be involved not only in the desensitization and internalization of G protein-coupled receptors but also in the G protein-independent activation of mitogen-activated protein (MAP) kinases, such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), to regulate cell proliferation and inflammation. Our previous study revealed that the histamine H1 receptor-mediated activation of ERK is dually regulated by Gq proteins and arrestins. In this study, we investigated the roles of Gq proteins and arrestins in the H1 receptor-mediated activation of JNK in Chinese hamster ovary (CHO) cells expressing wild-type (WT) human H1 receptors, the Gq protein-biased mutant S487TR, and the arrestin-biased mutant S487A. In these mutants, the Ser487 residue in the C-terminus region of the WT was truncated (S487TR) or mutated to alanine (S487A). Histamine significantly stimulated JNK phosphorylation in CHO cells expressing WT and S487TR but not S487A. Histamine-induced JNK phosphorylation in CHO cells expressing WT and S487TR was suppressed by inhibitors against H1 receptors (ketotifen and diphenhydramine), Gq proteins (YM-254890), and protein kinase C (PKC) (GF109203X) as well as an intracellular Ca2+ chelator (BAPTA-AM) but not by inhibitors against G protein-coupled receptor kinases (GRK2/3) (cmpd101), ß-arrestin2 (ß-arrestin2 siRNA), and clathrin (hypertonic sucrose). These results suggest that the H1 receptor-mediated phosphorylation of JNK is regulated by Gq-protein/Ca2+/PKC-dependent but GRK/arrestin/clathrin-independent pathways.


Assuntos
Arrestina , Histamina , Animais , Cricetinae , Humanos , Arrestina/metabolismo , Arrestinas/metabolismo , beta-Arrestinas/metabolismo , Células CHO , Clatrina/metabolismo , Cricetulus , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Histamina/farmacologia , Histamina/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Receptores Histamínicos H1/genética , Receptores Histamínicos H1/metabolismo , Transdução de Sinais
7.
PLoS One ; 19(3): e0300520, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512891

RESUMO

Stellera chamaejasme L. (SCL) is a perennial herb with demonstrated bioactivities against inflammation and metabolic dysfunction. Adipocyte differentiation is a critical regulator of metabolic homeostasis and a promising target for the treatment of metabolic diseases, so we examined the effects of SCL on adipogenesis. A methanol extract of SCL dose-dependently suppressed intracellular lipid accumulation in adipocyte precursors cultured under differentiation induction conditions and reduced expression of the adipogenic transcription factors PPARγ and C/EBPα as well as the downstream lipogenic genes fatty acid binding protein 4, adiponectin, fatty acid synthase, and stearoyl-CoA desaturase. The extract also promoted precursor cell proliferation and altered expression of the cell cycle regulators cyclin-dependent kinase 4, cyclin E, and cyclin D1. In addition, SCL extract stimulated extracellular signal-regulated kinase (ERK) phosphorylation, while pharmacological inhibition of ERK effectively blocked the inhibitory effects of SCL extract on preadipocyte differentiation. These results suggest that SCL extract contains bioactive compounds that can suppress adipogenesis through modulation of the ERK pathway.


Assuntos
Adipogenia , MAP Quinases Reguladas por Sinal Extracelular , Camundongos , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Diferenciação Celular , Metabolismo dos Lipídeos , Adipócitos/metabolismo , Células 3T3-L1 , PPAR gama/metabolismo
8.
Theriogenology ; 220: 108-115, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507824

RESUMO

The presence of Kisspeptin (Kp) and its receptors in the corpus luteum (CL) of buffalo has recently been demonstrated. In this study, we investigated the role of Kp in the modulation of progesterone (P4) synthesis in vitro. The primary culture of bubaline luteal cells (LCs) was treated with 10, 50, and 100 nM of Kp and Kp antagonist (KpA) alongside a vehicle control. The combined effect of Kp and KpA was assessed at 100 nM concentration. Intracellular response to Kp treatment in the LCs was assessed by examining transcript profiles (LHR, STAR, CYP11A1, HSD3B1, and ERK1/2) using quantitative polymerase chain reaction (qPCR). In addition, the immunolocalization of ERK1/2 and phosphorylated ERK1/2 (p-ERK1/2) in the LCs was studied using immunocytochemistry. Accumulation of P4 from the culture supernatant was determined using enzyme-linked immunosorbent assay (ELISA). The results indicated that LCs had a greater p-ERK1/2 expression in the Kp treatment groups. A significant increase in the P4 concentration was recorded at 50 nM and 100 nM Kp, while KpA did not affect the basal concentration of P4. However, the addition of KpA to the Kp-treated group at 100 nM concentration suppressed the Kp-induced P4 accumulation into a concentration similar to the control. There was significant upregulation of ERK1/2 and CYP11A1 expressions in the Kp-treated LCs at 100 nM (18.1 and 37fold, respectively, p < 0.01). However, the addition of KpA to Kp-treated LCs modulated ERK1/2, LHR, STAR, CYP11A1, and HSD3B1 at 100 nM concentration. It can be concluded that Kp at 100 nM stimulated P4 production, while the addition of KpA suppressed Kp-induced P4 production in the buffalo LCs culture. Furthermore, an increment in p-ERK1/2 expression in the LCs indicated activation of the Kp signaling pathway was associated with luteal steroidogenesis.


Assuntos
Células Lúteas , Feminino , Animais , Progesterona/metabolismo , Kisspeptinas/genética , Kisspeptinas/farmacologia , Kisspeptinas/metabolismo , Regulação para Cima , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Sistema de Sinalização das MAP Quinases , Corpo Lúteo/fisiologia , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo
9.
Mar Drugs ; 22(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535478

RESUMO

We demonstrated the effect of Ishige okamurae extract (IOE) on the receptor activator of nuclear factor-κB ligand (RANKL)-promoted osteoclastogenesis in RAW 264.7 cells and confirmed that IOE inhibited RANKL-induced tartrate-resistant acid phosphatase (TRAP) activity and osteoclast differentiation. IOE inhibited protein expression of TRAP, metallopeptidase-9 (MMP-9), the calcitonin receptor (CTR), and cathepsin K (CTK). IOE treatment suppressed the expression of activated T cell cytoplasmic 1 and activator protein-1, thus controlling the expression of osteoclast-related factors. Moreover, IOE significantly reduced RANKL-phosphorylated extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). It also reduced the RANKL-induced phosphorylation of NF-κB and nuclear translocation of p65. IOE inhibited Dex-induced bone loss and osteoclast-related gene expression in zebrafish larvae. HPLC analysis shows that IOE consists of 3.13% and 3.42% DPHC and IPA, respectively. Our results show that IOE has inhibitory effects on osteoclastogenesis in vitro and in vivo and is a potential therapeutic for osteoporosis.


Assuntos
Osteogênese , Peixe-Zebra , Animais , Osteoclastos , Cromatografia Líquida de Alta Pressão , MAP Quinases Reguladas por Sinal Extracelular , Ligante RANK
10.
Int Immunopharmacol ; 130: 111772, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38432148

RESUMO

Post-operative cognitive dysfunction (POCD) is a multi-etiological symptom mainly occurred in elderly people after surgery. The activation of retinoic acid receptor α (RARα), a transcriptional factor, was previously predicated to be negatively associated with the occurrence of POCD. However, the mechanisms underlying anti-POCD effects of RARα were still unclear. In this study, AM580, a selective agonist of RARα, and all-trans-retinoic acid (ATRA), a pan agonist of RAR, significantly alleviated cognitive dysfunction and increased the expression of RARα in elderly mice after surgery, which was decreased by RO41-5253, an antagonist of RARα. A bioinformatic study further predicted that the activation of RARα might produce anti-POCD effects via the restoration of synaptic proteins. Both agonists inhibited the expression of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (Myd88) and the phosphorylation of nuclear factorkappa-B (NF-κB), leading to the prevention of microglial over-activation and pro-inflammatory cytokines secretion in the hippocampal regions of elderly mice after surgery. Moreover, AM580 and ATRA increased the expression of brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD95), and the phosphorylation of extracellular signal-regulated kinase (ERK) and cAMP-response element binding protein (CREB). All these results suggested that the activation of RARα prevented surgery-induced cognitive impairments via the inhibition of neuroinflammation by the reduction of the TLR4/Myd88/NF-κB pathway and the restoration of synaptic proteins by the activation of the BDNF/ERK/CREB pathway, providing a further support that RARα could be developed as a therapeutic target for POCD.


Assuntos
Benzoatos , NF-kappa B , Complicações Cognitivas Pós-Operatórias , Receptor alfa de Ácido Retinoico , Tetra-Hidronaftalenos , Animais , Camundongos , Benzoatos/farmacologia , Benzoatos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos Endogâmicos ICR , Fator 88 de Diferenciação Mieloide/metabolismo , Doenças Neuroinflamatórias/prevenção & controle , NF-kappa B/metabolismo , Complicações Cognitivas Pós-Operatórias/prevenção & controle , Receptor alfa de Ácido Retinoico/agonistas , Transdução de Sinais , Tetra-Hidronaftalenos/farmacologia , Tetra-Hidronaftalenos/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Tretinoína/farmacologia
11.
Aging (Albany NY) ; 16(5): 4811-4831, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38460944

RESUMO

Inhibitors of Epidermal growth factor receptor tyrosine kinase (EGFR-TKIs) are producing impressive benefits to responsive types of cancers but challenged with drug resistances. FHND drugs are newly modified small molecule inhibitors based on the third-generation EGFR-TKI AZD9291 (Osimertinib) that are mainly for targeting the mutant-selective EGFR, particularly for the non-small cell lung cancer (NSCLC). Successful applications of EGFR-TKIs to other cancers are less certain, thus the present pre-clinical study aims to explore the anticancer effect and downstream targets of FHND in multiple myeloma (MM), which is an incurable hematological malignancy and reported to be insensitive to first/second generation EGFR-TKIs (Gefitinib/Afatinib). Cell-based assays revealed that FHND004 and FHND008 significantly inhibited MM cell proliferation and promoted apoptosis. The RNA-seq identified the involvement of the MAPK signaling pathway. The protein chip screened PDZ-binding kinase (PBK) as a potential drug target. The interaction between PBK and FHND004 was verified by molecular docking and microscale thermophoresis (MST) assay with site mutation (N124/D125). Moreover, the public clinical datasets showed high expression of PBK was associated with poor clinical outcomes. PBK overexpression evidently promoted the proliferation of two MM cell lines, whereas the FHND004 treatment significantly inhibited survival of 5TMM3VT cell-derived model mice and growth of patient-derived xenograft (PDX) tumors. The mechanistic study showed that FHND004 downregulated PBK expression, thus mediating ERK1/2 phosphorylation in the MAPK pathway. Our study not only demonstrates PBK as a promising novel target of FHND004 to inhibit MM cell proliferation, but also expands the EGFR kinase-independent direction for developing anti-myeloma therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Quinases de Proteína Quinase Ativadas por Mitógeno , Mieloma Múltiplo , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Simulação de Acoplamento Molecular , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Proliferação de Células , Mutação
12.
Basic Clin Pharmacol Toxicol ; 134(5): 629-642, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38501576

RESUMO

The effectiveness of natural killer (NK) cells transferred adoptively in combating solid tumours is limited by challenges such as their difficulty in penetrating tumours from the bloodstream and maintaining viability without the support of interleukin-2 (IL-2). Genetically modified NK-92MI cells, which can release IL-2 to sustain their viability, have been identified as a promising alternative. This adaptation addresses the negative consequences of systemic IL-2 administration. The role of PSD-95/discs large/ZO-1 (PDZ)-binding kinase (PBK) in cancer development is recognized, but its effects on immunity are not fully understood. This study explores how PBK expression influences the ability of NK-92MI cells to infiltrate ovarian tumours. Elevated levels of PBK expression have been found in various cancers, including ovarian cancer (OV), with analyses showing higher PBK mRNA levels in tumour tissues compared to normal ones. Immunohistochemistry has confirmed increased PBK expression in OV tissues. Investigations into PBK's role in immune regulation reveal its association with immune cell infiltration, indicating a potentially compromised immune environment in OV with high PBK expression. The small-molecule inhibitor HI-TOPK-032, which inhibits PBK, enhances the cytotoxicity of NK-92MI cells toward OV cells. It increases the production of interferon-γ and tumour necrosis factor-α, reduces apoptosis and encourages cell proliferation. Mechanistic studies showed that contact with OV cells treated with HI-TOPK-032 upregulates CD107a on NK-92 cells. In vivo studies demonstrated that HI-TOPK-032 improves the antitumour effects of NK-92MI cells in OVCAR3Luc xenografts, extending survival without significant side effects. Safety assessments in mice confirm HI-TOPK-032's favourable safety profile, highlighting its potential as a viable antitumour therapy. These results suggest that combining NK-92MI cells with HI-TOPK-032 enhances antitumour effectiveness against OV, indicating a promising, safe and effective treatment strategy that warrants further clinical investigation.


Assuntos
Indolizinas , Interleucina-2 , Neoplasias Ovarianas , Quinoxalinas , Humanos , Camundongos , Animais , Feminino , Apoptose , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular , Células Matadoras Naturais
13.
Proc Natl Acad Sci U S A ; 121(13): e2314802121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498715

RESUMO

The molecular basis for cortical expansion during evolution remains largely unknown. Here, we report that fibroblast growth factor (FGF)-extracellular signal-regulated kinase (ERK) signaling promotes the self-renewal and expansion of cortical radial glial (RG) cells. Furthermore, FGF-ERK signaling induces bone morphogenic protein 7 (Bmp7) expression in cortical RG cells, which increases the length of the neurogenic period. We demonstrate that ERK signaling and Sonic Hedgehog (SHH) signaling mutually inhibit each other in cortical RG cells. We provide evidence that ERK signaling is elevated in cortical RG cells during development and evolution. We propose that the expansion of the mammalian cortex, notably in human, is driven by the ERK-BMP7-GLI3R signaling pathway in cortical RG cells, which participates in a positive feedback loop through antagonizing SHH signaling. We also propose that the relatively short cortical neurogenic period in mice is partly due to mouse cortical RG cells receiving higher SHH signaling that antagonizes ERK signaling.


Assuntos
Células Ependimogliais , MAP Quinases Reguladas por Sinal Extracelular , Animais , Camundongos , Humanos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Ependimogliais/metabolismo , Proliferação de Células , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Fatores de Crescimento de Fibroblastos , Mamíferos/metabolismo
14.
Arch Pharm Res ; 47(3): 288-299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38489148

RESUMO

Microbiota-derived catabolism of nutrients is closely related to ulcerative colitis (UC). The level of indole-3-acetic acid (IAA), a microbiota-dependent metabolite of tryptophan, was decreased significantly in the feces of UC patients. Thus supplementation with IAA could be a potential therapeutic method for ameliorating colitis. In this work, the protective effect of supplementation with IAA on dextran sulfate sodium (DSS)-induced colitis was evaluated, and the underlying mechanism was elucidated. The results indicated that the administration of IAA significantly relieved DSS-induced weight loss, reduced the disease activity index (DAI), restored colon length, alleviated intestinal injury, and improved the intestinal tight junction barrier. Furthermore, IAA inhibited intestinal inflammation by reducing the expression of proinflammatory cytokines and promoting the production of IL-10 and TGF-ß1. In addition, the ERK signaling pathway is an important mediator of various physiological processes including inflammatory responses and is closely associated with the expression of IL-10. Notably, IAA treatment induced the activation of extracellular signal-regulated kinase (ERK), which is involved in the progression of colitis, while the ERK inhibitor U0126 attenuated the beneficial effects of IAA. In summary, IAA could attenuate the clinical symptoms of colitis, and the ERK signaling pathway was involved in the underlying mechanism. Supplementation with IAA could be a potential option for preventing or ameliorating UC.


Assuntos
Colite Ulcerativa , Colite , Ácidos Indolacéticos , Humanos , Animais , Camundongos , Interleucina-10/metabolismo , Sulfato de Dextrana/toxicidade , Sulfato de Dextrana/metabolismo , Colo/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/efeitos adversos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Transdução de Sinais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
15.
Mol Immunol ; 167: 25-33, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310670

RESUMO

Acute lung injury (ALI) is a prevailing and deadly complication of sepsis coupled with increasing incidence and fatality rate. Annexin A3 (ANXA3) has been unraveled to be upregulated during sepsis. This study purposed to assess the role and the mechanism of ANXA3 in sepsis-induced ALI. After the construction of mouse model of sepsis, the pathological changes of mice lung tissues were estimated by H&E staining. ANXA3 expression in mice lung tissues and serum was examined. The degree of pulmonary edema and the levels of inflammatory factors in bronchoalveolar lavage fluid (BALF) were analyzed. In lipopolysaccharide (LPS)-induced mouse ALI model in vitro, CCK-8 assay measured cell viability and flow cytometry analysis detected cell apoptosis. Besides, ELISA assay detected the release of inflammatory cytokines. Western blot analyzed the expression of proteins associated with inflammation, apoptosis and extracellular-signal-regulated kinase (ERK)/ETS-like gene 1 (ELK1) signaling. Results revealed that ANXA3 was overexpressed in the lung tissues and serum of septic mice. Following the knockdown of ANXA3, sepsis-induced lung injury was alleviated, manifested as reduced lung edema, decreased inflammatory cell infiltration and inhibited cell apoptosis. Additionally, ANXA3 silence blocked ERK/ELK1 signaling both in sepsis mouse models and in vitro model of ALI induced by lipopolysaccharide (LPS). Moreover, the inhibitory effects of ANXA3 silencing on ERK/ELK1 signaling activation, the viability damage, inflammation and apoptosis in LPS-induced mouse ALI model in vitro were partially reversed by ERK activator. Collectively, depletion of ANXA3 exerted suppressive effects on the inflammation and apoptosis in sepsis-induced ALI through blocking ERK/ELK1 signaling.


Assuntos
Lesão Pulmonar Aguda , Sepse , Animais , Camundongos , Lesão Pulmonar Aguda/patologia , Anexina A3/metabolismo , Apoptose , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Sepse/metabolismo
16.
J Alzheimers Dis ; 98(1): 119-131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38363611

RESUMO

Background: Alzheimer's disease (AD), the most common form of dementia, is characterized by memory loss and the abnormal accumulation of senile plaques composed of amyloid-ß (Aß) protein. Trichosanthis Semen (TS) is a traditional herbal medicine used to treat phlegm-related conditions. While TS is recognized for various bioactivities, including anti-neuroinflammatory effects, its ability to attenuate AD remains unknown. Objective: To evaluate the effects of TS extract (TSE) on neuronal damage, Aß accumulation, and neuroinflammation in AD models. Methods: Thioflavin T and western blot assays were used to assess effects on Aß aggregation in vitro. TS was treated to PC12 cells with Aß to assess the neuroprotective effects. Memory functions and histological brain features were investigated in TSE-treated 5×FAD transgenic mice and mice with intracerebroventricularly injected Aß. Results: TSE disrupted Aß aggregation and increased the viability of cells and phosphorylation of both protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) in vitro. TSE treatment also suppressed the accumulation of Aß plaques in the brain of 5×FAD mice, protected neuronal cells in both the subiculum and medial septum, and upregulated Akt/ERK phosphorylation in the hippocampus. Moreover, TSE ameliorated the memory decline and glial overactivation observed in 5×FAD mice. As assessing whether TS affect Aß-induced neurotoxicity in the Aß-injected mice, the effects of TS on memory improvement and neuroinflammatory inhibition were confirmed. Conclusions: TSE disrupted Aß aggregation, protected neurons against Aß-induced toxicity, and suppressed neuroinflammation, suggesting that it can suppress the development of AD.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Ratos , Camundongos , Animais , Doença de Alzheimer/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sêmen/metabolismo , Doenças Neuroinflamatórias , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Transdução de Sinais , Modelos Animais de Doenças
17.
J Med Food ; 27(4): 330-338, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387002

RESUMO

Gastric cancer is the fifth most common cancer globally and the third leading cause of cancer-related mortality. Existing treatment strategies for gastric cancer often present numerous side effects. Consequently, recent studies have shifted toward devising new treatments grounded in safer natural substances. α-Pinene, a natural terpene found in the essential oils of various plants, such as Lavender angustifolia and Satureja myrtifolia, displays antioxidant, antibiotic, and anticancer properties. Yet, its impact on gastric cancer remains unexplored. This research assessed the effects of α-pinene in vitro using a human gastric adenocarcinoma cell-line (AGS) human gastric cancer cells and in vivo via a xenograft mouse model. The survival rate of AGS cells treated with α-pinene was notably lower than that of the control group, as revealed by the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide assay. This decline in cell viability was linked to apoptosis, as verified by 4',6-diamidino-2-phenylindole and annexin V/propidium iodide staining. The α-pinene-treated group exhibited elevated cleaved-poly (ADP-ribose) polymerase and B cell lymphoma 2 (Bcl-2)-associated X (Bax) levels and reduced Bcl-2 levels compared with the control levels. Moreover, α-pinene triggered the activation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 within the mitogen-activated protein kinase (MAPK) pathway. In the xenograft mouse model, α-pinene induced apoptosis through the MAPK pathway, devoid of toxicity. These findings position α-pinene as a promising natural therapeutic for gastric cancer.


Assuntos
Monoterpenos Bicíclicos , Neoplasias Gástricas , Humanos , Animais , Camundongos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Apoptose , MAP Quinases Reguladas por Sinal Extracelular , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proliferação de Células
18.
Cancer Lett ; 586: 216677, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301910

RESUMO

Gallbladder cancer (GBC) is a common solid tumor of the biliary tract with a high mortality rate and limited curative benefits from surgical resection. Here, we aimed to elucidate the pathogenesis of GBC from the perspective of molecular mechanisms and determined that protein phosphatase 4 regulator subunit 1 (PP4R1) is overexpressed in GBC tissues and contributes to poor prognosis. Through a series of in vitro and in vivo experiments, we demonstrated that PP4R1 overexpression improved tumorigenesis in GBC cells. Further mechanistic exploration revealed that PP4R1 directly interacts with pyruvate kinase-M2 (PKM2), a key regulator of glycolysis. PP4R1 promotes the extracellular signal-related kinase 1 and 2 (ERK1/2)-mediated PKM2 nuclear translocation, thereby participating in the regulation of tumor glycolysis. Interestingly, we determined that PP4R1 strengthens the interaction between ERK1/2 and PKM2. Furthermore, PP4R1 enhanced the suppressive effects of the ERK inhibitor SCH772984 on GBC. In conclusion, our data showed that PP4R1 is a promising biomarker associated with GBC and confirmed that PP4R1 regulates PKM2-mediated tumor glycolysis, which provides a metabolic growth advantage to GBC cells, thereby promoting GBC tumor growth and metastasis1.


Assuntos
Neoplasias da Vesícula Biliar , Humanos , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/patologia , Regulação Neoplásica da Expressão Gênica , Glicólise , Sistema de Sinalização das MAP Quinases , Monoéster Fosfórico Hidrolases/metabolismo
19.
Biochem Biophys Res Commun ; 704: 149673, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38401305

RESUMO

Epidermal growth factor receptor (EGFR)-mediated signal transduction controls cell growth and proliferation. The signaling pathway is regulated so that it is activated only by external EGF stimuli, but the mechanisms that prevent EGF-independent spontaneous activation of EGFR-mediated signaling are unknown. Here we report cholesterol depletion activates EGFR-mediated signaling without EGF. We applied automated single-molecule imaging to EGFR and characterized the lateral diffusion and cluster formation on cholesterol-depleted and cholesterol-supplemented membranes. In cells in which cholesterol was depleted by methyl-ß-cyclodextrin (MßCD) treatment, EGFR exhibited a reduction in lateral diffusion, an acceleration of cluster formation, and autophosphorylation without EGF. Concurrently, extracellular signal-regulated kinase (ERK), which is regulated by EGFR-mediated signaling, exhibited phosphorylation and nuclear translocation without EGF. These cholesterol depletion-induced changes were similar, albeit less efficient, to those that occurred with EGF stimulation in normal cells without MßCD, indicating the spontaneous activation of EGFR signaling. The exogenous supplementation of cholesterol suppressed the MßCD-induced spontaneous activation of EGFR and ERK nuclear translocation. Single-molecule imaging of EGFR in a large number of cells revealed cell-to-cell heterogeneity, with a sub-population showing a high ability for spontaneous activation. These results provide evidence that EGFR-mediated signaling is properly regulated by cholesterol metabolism to prevent uncontrolled spontaneous activation.


Assuntos
Fator de Crescimento Epidérmico , Transdução de Sinais , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Fosforilação , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Colesterol/metabolismo
20.
Int. j. morphol ; 42(1): 154-161, feb. 2024. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1528830

RESUMO

SUMMARY: Esophageal cancer is one of the most aggressive gastrointestinal cancers. Invasion and metastasis are the main causes of poor prognosis of esophageal cancer. SPRY2 has been reported to exert promoting effects in human cancers, which controls signal pathways including PI3K/AKT and MAPKs. However, the expression of SPRY2 in esophageal squamous cell carcinoma (ESCC) and its underlying mechanism remain unclear. In the present study, we aimed to investigate the detailed role of SPRY2 in the regulation of cell proliferation, invasion and ERK/AKT signaling pathway in ESCC. It was identified that the expression level of SPRY2 in ESCC was remarkably decreased compared with normal tissues, and it was related to clinicopathologic features and prognosis ESCC patients. The upregulation of SPRY2 expression notably inhibited the proliferation, migration and invasion of Eca-109 cells. In addition, the activity of ERK /AKT signaling was also suppressed by the SPRY2 upregulation in Eca-109 cells. Our study suggests that overexpression of SPRY2 suppress cancer cell proliferation and invasion of by through suppression of the ERK/AKT signaling pathways in ESCC. Therefore, SPRY2 may be a promising prognostic marker and therapeutic target for ESCC.


El cáncer de esófago es uno de los cánceres gastrointestinales más agresivos. La invasión y la metástasis son las principales causas de mal pronóstico del cáncer de esófago. Se ha informado que SPRY2 ejerce efectos promotores en los cánceres humanos, que controla las vías de señales, incluidas PI3K/AKT y MAPK. Sin embargo, la expresión de SPRY2 en el carcinoma de células escamosas de esófago (ESCC) y su mecanismo subyacente aún no están claros. En el presente estudio, nuestro objetivo fue investigar el papel detallado de SPRY2 en la regulación de la proliferación celular, la invasión y la vía de señalización ERK/AKT en ESCC. Se identificó que el nivel de expresión de SPRY2 en ESCC estaba notablemente disminuido en comparación con los tejidos normales, y estaba relacionado con las características clínico-patológicas y el pronóstico de los pacientes con ESCC. La regulación positiva de la expresión de SPRY2 inhibió notablemente la proliferación, migración e invasión de células Eca-109. Además, la actividad de la señalización de ERK/AKT también fue suprimida por la regulación positiva de SPRY2 en las células Eca-109. Nuestro estudio sugiere que la sobreexpresión de SPRY2 suprime la proliferación y la invasión de células cancerosas mediante la supresión de las vías de señalización ERK/AKT en ESCC. Por lo tanto, SPRY2 puede ser un marcador de pronóstico prometedor y un objetivo terapéutico para la ESCC.


Assuntos
Humanos , Neoplasias Esofágicas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Proteínas de Membrana/metabolismo , Imuno-Histoquímica , Biomarcadores Tumorais , Western Blotting , MAP Quinases Reguladas por Sinal Extracelular , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...